Monday 25 September 2017

O Que É O Filtro Médio Móvel


Média móvel Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Uma média móvel é usada para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossas séries temporais. 2. Na guia Dados, clique em Análise de dados. Nota: não consigo encontrar o botão Análise de dados Clique aqui para carregar o complemento Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Intervalo de entrada e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e digite 6. 6. Clique na caixa Escala de saída e selecione a célula B3. 8. Traçar um gráfico desses valores. Explicação: porque definimos o intervalo para 6, a média móvel é a média dos 5 pontos de dados anteriores e o ponto de dados atual. Como resultado, picos e vales são alisados. O gráfico mostra uma tendência crescente. O Excel não pode calcular a média móvel para os primeiros 5 pontos de dados porque não há suficientes pontos de dados anteriores. 9. Repita os passos 2 a 8 para o intervalo 2 e o intervalo 4. Conclusão: quanto maior o intervalo, mais os picos e os vales são alisados. Quanto menor o intervalo, mais perto as médias móveis são para os pontos de dados reais. Média móvel como um filtro A média móvel é freqüentemente usada para suavizar os dados na presença de ruído. A média móvel simples nem sempre é reconhecida como o filtro de Resposta de Impulso Finito (FIR) que é, enquanto na verdade é um dos filtros mais comuns no processamento de sinal. Tratá-lo como um filtro, permitindo compará-lo com, por exemplo, filtros com janelas-sinc (veja os artigos sobre os filtros passa-baixa, passagem alta e banda passada e banda-rejeição para exemplos desses). A principal diferença com esses filtros é que a média móvel é adequada para sinais para os quais a informação útil está contida no domínio do tempo. Dos quais suavizar medições por meio da média é um excelente exemplo. Os filtros Windowed-sinc, por outro lado, são performantes no domínio da frequência. Com equalização no processamento de áudio como um exemplo típico. Existe uma comparação mais detalhada de ambos os tipos de filtros no Time Domain vs. Frequency Domain Performance of Filters. Se você tem dados para os quais tanto o tempo como o domínio de freqüência são importantes, então você pode querer dar uma olhada em Variações na Média Móvel. Que apresenta uma série de versões ponderadas da média móvel que são melhores nisso. A média móvel do comprimento (N) pode ser definida como escrita como normalmente é implementada, com a amostra de saída atual como a média das amostras anteriores (N). Visto como um filtro, a média móvel realiza uma convolução da sequência de entrada (xn) com um impulso retangular de comprimento (N) e altura (1N) (para tornar a área do pulso e, portanto, o ganho do filtro , 1 ). Na prática, é melhor tomar (N) ímpar. Embora uma média móvel também possa ser calculada usando um número par de amostras, usando um valor ímpar para (N) tem a vantagem de que o atraso do filtro será um número inteiro de amostras, uma vez que o atraso de um filtro com (N) As amostras são exatamente ((N-1) 2). A média móvel pode então ser alinhada exatamente com os dados originais, deslocando-a por um número inteiro de amostras. Domínio do tempo Uma vez que a média móvel é uma convolução com um pulso retangular, sua resposta de freqüência é uma função sinc. Isso torna algo parecido com o dual do filtro windowed-sinc, uma vez que é uma convolução com um pulso sinc que resulta em uma resposta de freqüência retangular. Essa é essa resposta de freqüência de voz que torna a média móvel um desempenho pobre no domínio da freqüência. No entanto, ele funciona muito bem no domínio do tempo. Portanto, é perfeito suavizar os dados para remover o ruído e, ao mesmo tempo, manter uma resposta de passo rápido (Figura 1). Para o típico Black Gaussian Noise (AWGN) que é frequentemente assumido, as amostras de média (N) têm o efeito de aumentar o SNR por um fator de (sqrt N). Uma vez que o ruído para as amostras individuais não está correlacionado, não há motivo para tratar cada amostra de forma diferente. Assim, a média móvel, que dá a cada amostra o mesmo peso, eliminará a quantidade máxima de ruído para uma nitidez de resposta de passo dada. Implementação Por ser um filtro FIR, a média móvel pode ser implementada através da convolução. Em seguida, terá a mesma eficiência (ou falta dela) como qualquer outro filtro FIR. No entanto, também pode ser implementado de forma recursiva, de uma maneira muito eficiente. Ele segue diretamente da definição de que esta fórmula é o resultado das expressões para (yn) e (yn1), ou seja, onde percebemos que a mudança entre (yn1) e (yn) é que um termo extra (xn1N) aparece em O fim, enquanto o termo (xn-N1N) é removido desde o início. Em aplicações práticas, muitas vezes é possível excluir a divisão por (N) para cada termo, compensando o ganho resultante de (N) em outro local. Esta implementação recursiva será muito mais rápida do que a convolução. Cada novo valor de (y) pode ser calculado com apenas duas adições, em vez das adições (N) que seriam necessárias para uma implementação direta da definição. Uma coisa a procurar com uma implementação recursiva é que os erros de arredondamento se acumulam. Isso pode ou não ser um problema para a sua aplicação, mas também implica que esta implementação recursiva funcionará melhor com uma implementação inteira do que com números de ponto flutuante. Isso é bastante incomum, uma vez que uma implementação em ponto flutuante geralmente é mais simples. A conclusão de tudo isso deve ser que você nunca deve subestimar a utilidade do filtro de média móvel simples em aplicações de processamento de sinal. Ferramenta de design de filtro Este artigo é complementado com uma ferramenta de design de filtro. Experimente valores diferentes para (N) e visualize os filtros resultantes. Experimente agora Filtro Meteorológico Nomes comuns: filtragem média, suavização, média, filtragem de caixa Descrição breve A filtragem média é um método de alisamento simples, intuitivo e fácil de implementar, ou seja, reduzindo a quantidade de variação de intensidade entre um pixel e o próximo. Muitas vezes, é usado para reduzir o ruído nas imagens. Como funciona A idéia de filtragem média é simplesmente substituir cada valor de pixel em uma imagem com o valor médio (médio) de seus vizinhos, inclusive em si. Isso tem o efeito de eliminar valores de pixels que não são representativos de seus arredores. A filtragem média geralmente é pensada como um filtro de convolução. Como outras circunvoluções, ela é baseada em um kernel. Que representa a forma e o tamanho da vizinhança a ser amostrada ao calcular a média. Muitas vezes, um núcleo quadrado 32153 é usado, como mostrado na Figura 1, embora os grãos maiores (por exemplo 52155 quadrados) possam ser usados ​​para um alisamento mais severo. (Observe que um pequeno kernel pode ser aplicado mais de uma vez para produzir um efeito similar, mas não idêntico, como uma única passagem com um kernel grande). Figura 1 32153 núcleo de média usado frequentemente na filtração média. Computação da convolução direta de uma imagem com Este kernel realiza o processo de filtragem médio. Diretrizes para uso A filtragem média é mais comumente usada como um método simples para reduzir o ruído em uma imagem. Nós ilustramos o filtro usando mostra o original corrompido por ruído gaussiano com uma média de zero e um desvio padrão () de 8. mostra o efeito de aplicar um filtro médio 32153. Observe que o ruído é menos aparente, mas a imagem foi suavizada. Se aumentarmos o tamanho do filtro médio para 52155, obtemos uma imagem com menos ruído e menor detalhe de alta freqüência, conforme mostrado na mesma imagem mais severamente corrompida por ruído gaussiano (com uma média de zero e um de 13) é mostrado In é o resultado da filtragem média com um kernel 32153. Uma tarefa ainda mais desafiadora é fornecida por mostra o efeito de suavizar a imagem ruidosa com um filtro médio 32153. Uma vez que os valores de pixel de ruído de disparo são muitas vezes muito diferentes dos valores circundantes, eles tendem a distorcer significativamente a média de pixels calculada pelo filtro médio. Usando um filtro 52155 em vez disso, este resultado não é uma melhoria significativa na redução de ruído e, além disso, a imagem agora está muito desfocada. Estes exemplos ilustram os dois principais problemas com a filtragem média, que são: Um único pixel com um valor muito não representativo pode afetar significativamente o valor médio de todos os pixels em sua vizinhança. Quando a vizinhança do filtro se aproxima de uma borda, o filtro irá interpor novos valores para pixels na borda e, desse modo, irá desfocar essa borda. Isso pode ser um problema se forem necessárias bordas afiadas na saída. Ambos os problemas são abordados pelo filtro mediano. O que geralmente é um filtro melhor para reduzir o ruído do que o filtro médio, mas leva mais tempo para calcular. Em geral, o filtro médio atua como um filtro de freqüência de passagem baixa e, portanto, reduz as derivadas de intensidade espacial presentes na imagem. Nós já vimos esse efeito como um amolecimento das características faciais no exemplo acima. Agora, considere a imagem que representa uma cena que contém uma gama mais ampla de diferentes freqüências espaciais. Depois de suavizar uma vez com um filtro médio 32153, obtemos Observe que a baixa informação de frequência espacial em segundo plano não foi significativamente afetada pela filtragem, mas as bordas (uma vez crisp) do primeiro plano foram suavizadas. Depois de filtrar com um filtro 72157, obtemos uma ilustração ainda mais dramática desse fenômeno. Compare esse resultado com o obtido passando um filtro 32153 sobre a imagem original três vezes em Variantes Comuns. As variações no filtro de suavização médio discutido aqui incluem Threshold Averaging em que O alisamento é aplicado sujeito à condição de que o valor do pixel central seja alterado somente se a diferença entre seu valor original e o valor médio for superior a um limite predefinido. Isso tem o efeito de que o ruído seja alisado com uma perda menos dramática nos detalhes da imagem. Outros filtros de convolução que não calculam a média de um bairro também são freqüentemente usados ​​para suavizar. Um dos mais comuns é o filtro de alisamento gaussiano. Experiência interativa Você pode experimentar de forma interativa com este operador clicando aqui. O filtro médio é calculado usando uma convolução. Você pode pensar em qualquer maneira em que as propriedades especiais do kernel de filtro médio podem ser usadas para acelerar a convolução. Qual é a complexidade computacional dessa convolução mais rápida Use um detector de borda na imagem e observe a força da saída. Em seguida, aplique um filtro médio 32153 para a imagem original e execute novamente o detector de borda. Comente sobre a diferença. O que acontece se um filtro 52155 ou 72157 for usado Aplicando um filtro médio 32153 duas vezes não produz o mesmo resultado que a aplicação de um filtro médio 52155 uma vez. No entanto, um kernel de convolução 52155 pode ser construído o qual é equivalente. O que esse kernel parece ser um kernel de convolução 72157 que tenha um efeito equivalente a três passagens com um filtro médio de 32153. Como você acha que o filtro médio enfrentaria o ruído gaussiano que não era simétrico em torno de zero. Tente alguns exemplos. Referências R. Boyle e R. Thomas Computer Vision: um primeiro curso. Blackwell Scientific Publications, 1988, pp. 32 - 34. E. Davies Visão da máquina: teoria, algoritmos e praticidades. Academic Press, 1990, cap. 3. D. Vernon Machine Vision. Prentice-Hall, 1991, cap. 4. Informações locais Informações específicas sobre este operador podem ser encontradas aqui. Um conselho mais geral sobre a instalação HIPR local está disponível na seção introdutória de Informações locais.

No comments:

Post a Comment